Molecule of the Month: Ribosomal Subunits
Atomic structures of the ribosomal subunits reveal a central role for RNA in protein synthesis
The Protein Factory
An Elusive Structure
Ribosomes are composed of two subunits: a large subunit, shown on the right, and a small subunit, shown on the left. Of course, the term "small" is used in a relative sense here: both the large and the small subunits are huge compared to a typical protein. Both subunits are composed of long strands of RNA, shown here in orange and yellow, dotted with protein chains, shown in blue. When synthesizing a new protein, the two subunits lock together with a messenger RNA trapped in the space between. The ribosome then walks down the messenger RNA three nucleotides at a time, building a new protein piece-by-piece.
The Large Subunit
The large subunit is composed of two RNA strands: a long one colored orange and a shorter one colored yellow. Dozens of proteins bind on the surface of the ribosome. Many have long, snaky tails that extend into the body of the ribosome, gluing the RNA strands into their proper shape. Several of the proteins were not seen in this crystallographic structure, perhaps because they are too flexible. Approximate shapes for these proteins, which form two prominent stalks commonly used as landmarks in electron micrographs, are indicated here in light blue.
An animated version of this image is also available on PDB-101.
The Small Subunit
An animated version of this image is also available on PDB-101.
Exploring the Structure
Large Ribosomal Subunit
Before jumping into these structures, be prepared. Both the large subunit and the small subunit are enormous complexes with many atoms: the structure of the large subunit in PDB entry 1ffk contains over 64,000 atoms, even though the authors chose to release only alpha carbon positions for the proteins, and the small subunit structure (1fka ), also with partial structures for the proteins, contains almost 35,000 atoms. Many interactive display programs become very sluggish when working on structures this large.
The picture shown here shows the proposed active site in the large ribosomal subunit. Adenine 2486 is thought to perform the synthesis reaction, at the location indicated by atom in bright turquoise. The two guanines shown on the left and the potassium ion shown in green serve to activate this adenine through a series of hydrogen bonds, shown in light blue. To explore this structure in more detail, click on the image for an interactive JSmol.
Topics for Further Discussion
- Many other proteins assist ribosomes during protein synthesis. To explore some of them, look at the resources in the Protein Synthesis category of PDB101.
Related PDB-101 Resources
- Browse Protein Synthesis
- Browse Nobel Prizes and PDB structures
- Browse Nucleic Acids
References
- 1ffk: Ban, N., Nissen, P., Hansen, J., Moore, P.B., Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. (2000) Science 289: 905-920
- 1fjg: Carter, A.P., Clemons Jr., W.M., Brodersen, D.E., Morgan-Warren, R.J., Wimberly, B.T., Ramakrishnan, V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics (2000) Nature 407: 340-348
- 1fka: Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F., Yonath, A. (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics Cell 102: 615-623
October 2000, David Goodsell
http://doi.org/10.2210/rcsb_pdb/mom_2000_10